

DHANAMANJURI UNIVERSITY

Examination- 2024 (June)

M.Sc. 2nd Semester

Name of Programme : M.Sc. Mathematics

Paper Type : Theory

Paper Code : MAT-508

Paper Title : Topology-II

Full Marks : 40

Pass Marks : 16 Duration: 2 Hours

The figures in the margin indicate full marks for the questions.

Answer any four of the following questions:

10×4=40

1. Answer the following questions:

a) Define a Topological space. 5

b) Prove that a non-empty subset of the real line is connected if and only if it is an interval. 5

2. State T_0 , T_1 and Hausdorff space. Prove that the product space of two

a) T_0 spaces is a T_0 space. 5

b) T_1 spaces is a T_1 space. 5

c) Hausdorff spaces is a Hausdorff space. 10

3. State and prove Urysohn Metrisation Theorem. 10

4. a) A space X is Hausdorff iff each net in X converges to atmost one point in X . 5

b) Let X be a Hausdorff space. Prove that

i) A compact subset of X is closed. 5

ii) Any two disjoint compact subsets of X have disjoint nbds. 5

5. a) Prove that a T_1 space X is countably compact iff it has the Bolzano-Weierstrass property.	5
b) Prove that if X and Y are compact, then so is $X \times Y$.	5
6. State and prove the Fundamental Theorem of Algebra.	10
7. Define Pseudo-metric. State and prove Nagata-Smirnov metrisation theorem.	10
8. State paracompact. Prove that the product of a paracompact space and a compact space is paracompact.	10
