

DHANAMANJURI UNIVERSITY**Examination- 2024 (December)****M.Sc.1st Semester****Name of Programme : M.Sc. Mathematics****Paper Type : Theory****Paper Code : MAT-504****Paper Title : Complex Analysis-I****Full Marks : 80****Pass Marks : 32****Duration: 3 Hours***The figures in the margin indicate full marks for the questions.***UNIT-1****Answer any three questions:** **$10 \times 3 = 30$**

1. a) Define continuity of a complex function at a plane. 1

b) Let $f(z) = \begin{cases} \frac{1}{z}, & z \neq 0, \\ \infty, & z = 0, \\ 0, & z = \infty \end{cases}$. Prove that $f(z)$ is continuous in the extended complex plane. 9

2. Let $f(z)$ be defined in neighborhood of $z = a+ib$; u_x, u_y, v_x, v_y are continuous at (a, b) and satisfy $u_x = v_y, u_y = -v_x$. Then prove that $f'(x)$ exists at $z = a+ib$. 10

3. Let $u(x, y)$ be a function that is harmonic in a simple connected domain Ω and let $C : |S| = R$ be any circle contained in Ω . Then prove that $u(x, y)$ has integral representation

$$u(re^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{R^2 - r^2}{R^2 - 2Rrcos(t-\theta) + r^2} u(Re^{it}) dt, 0 < r < R. \quad 10$$

4. Let $f(z)$ be analytic in a domain Ω and let y be a simple closed contour in Ω , taken in positive sense. Then for all z interior to y prove that $f'(z) = \frac{1}{2\pi i} \int_y \frac{f(s)}{(s-z)^2} ds$. 10

5. a) If a function is continuous on a domain D and $\int_y f(z) dz = 0$ for every closed contour y in D , then prove that $f(z)$ is analytic throughout D . 3

b) Suppose $f(z)$ is analytic in a domain Ω and $C = \{z : |z - a| = R\}$ contained in Ω . Then prove that $|f^{(n)}(a)| \leq \frac{n!M_R}{R^n}, = 0, 1, 2, \dots$ where $M_R = \max_{z \in C} |f(z)|$. 3

c) State and prove Liouville's Theorem. 4

UNIT-II

Answer any three questions:**10 × 3 = 30**

6. a) Suppose that a function f is analytic in the angular region

$R_1 < |z - a| < R_2$. Let C denote any positively oriented circle around a and lying in the domain. Then $f(z)$ can be expanded about any point in the annular domain

$$R_1 < |z - a| < R_2 \text{ as } f(z) = \sum_{n=0}^{\infty} a_n(z - a)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - a_n)^n} \text{ where}$$

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - a)^{n+1}} ds, n = 0, 1, 2, \dots$$

$$\text{and } b_n = \frac{1}{2\pi i} \int_C \frac{f(s)}{(s - a)^{-n+1}} ds, n = 1, 2, \dots \quad 6$$

b) Obtain the Laurent series expansion of $f(z) = \frac{z}{z^2 - 4z + 3}$. 4

7. Define the following with an example:

i) Singular Point	ii) Isolated Singularity
iii) Non-isolated Singularity	iv) Removable singularity
v) Pole	

8. Find the singularities, their types and hence the corresponding Residues of the following functions:

i) $\frac{z^2 + 16}{(z-1)^2(z+3)}$ ii) $\frac{\pi \cot \pi z}{z^2}$.

9. Let $f(z)$ be analytic in $|z| < 1$ with a zero of order n at the origin. Suppose that $|f(z)| \leq 1$ for all z in $|z| \leq 1$. Then $|f(z)| \leq |z|^n$ for $|z| < 1$ and $|f^{(n)}(0)| \leq n!$. The equality holds if $f(z) = cz^n$, $|c| = 1$. 10

10. State and prove Taylor Series Theorem for a Complex Function. 10

UNIT-III

Answer any three questions:**10 × 2 = 20**

11. State and prove the necessary condition for conformality of a transformation. 10

12. Find all the bilinear transformations of the half plane $\text{Im } z \geq 0$ into the circle 10 $|w| \leq 1$.

13. Show that the inversion map $w = \frac{1}{z}$ transforms circles and lines into circles and lines. 10

14. Find the fixed points and the normal form of the bilinear transformation 10 $w = \frac{(2+i)z-2}{2-i}$. And classify their nature.
