

DHANAMANJURI UNIVERSITY**Examination- 2024 (December)****M.Sc.1st Semester****Name of Programme : M.Sc. Mathematics****Paper Type : Theory****Paper Code : MAT-503****Paper Title : Topology-I****Full Marks : 80****Pass Marks : 32 Duration: 3 Hours***The figures in the margin indicate full marks for the questions.**Answer all the questions:*

1. a) Define 5
 i) Topological space
 ii) Discrete metric space
 iii) interior point
 iv) exterior point
 v) boundary point.

b) Let X be a space and let B be a base. Then show that B has the following properties: 5
 i) $X = \cup\{B : B \in \mathcal{B}\}$
 ii) For each $B_1, B_2 \in \mathcal{B}$ and every $x \in B_1 \cap B_2$, there exists a $B \in \mathcal{B}$ such that $x \in B \subseteq B_1 \cap B_2$.

2. a) Show that Euclidean space \square^n is a metric space with the metric defined by 6

$$d(x, y) = \sqrt{(\xi_1 - \eta_1)^2 + (\xi_2 - \eta_2)^2 + \cdots + (\xi_n - \eta_n)^2}$$

b) Does $d(x, y) = (x - y)^2$ define a metric on the set of all real numbers and why? 4

3. a) Prove that a function $f : X \rightarrow Y$ is continuous if and only if it continuous at each point of X . 5
 b) State and prove Lindelof's Theorem. 5

4. State and prove Urysohn's Lemma. 10

5. a) Let X be a Hausdorff space. Prove that 6

i) A compact subset of X is closed

ii) Any two disjoint compact subsets of X have disjoint nbds.

b) Prove that a locally compact subspace of a Hausdorff space is locally closed. 4

6. a) If (X, \mathfrak{J}) is a topological space and $Y \subseteq X$ and $\mathfrak{J}_Y = \{G \cap Y : G \in \mathfrak{J}\}$, then prove that \mathfrak{J}_Y is a topology on Y . 5

b) Let A be a subset of space X . Prove that $\overline{A} = A \cup A'$. 5

7. a) Let X be space and $A, B \subseteq X$. Show that 6

- i) $\overline{\overline{A}} = \overline{A}$
- ii) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$
- iii) $\overline{A \cup B} = \overline{A} \cup \overline{B}$
- iv) $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$

b) Show that intersection of two topology is again a topology. 4

8. a) Let X and Y be spaces and $f : X \rightarrow Y$ a function. Prove that f is closed if and only if $\overline{f(A)} \subseteq f(\overline{A})$ for each set $A \subseteq X$. 5

b) Prove that every basis of a second countable space contains a countable subfamily which is also a basis. 5
