

DHANAMANJURI UNIVERSITY**Examination- 2024 (December)****M.Sc.1st Semester****Name of Programme : M.Sc. Mathematics****Paper Type : Theory****Paper Code : MAT-502****Paper Title : Real Analysis-I****Full Marks : 80****Pass Marks : 32****Duration: 3 Hours***The figures in the margin indicate full marks for the questions.**Answer all the questions:***1. Answer any three of the following questions: $10 \times 3 = 30$**

a) i) If f is a bounded real valued function defined on $[a, b]$, α is monotonically increasing on $[a, b]$ and P^* is a refinement of P , then prove that $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ and $U(P^*, f, \alpha) \leq U(P, f, \alpha)$.

ii) Let f be a bounded real valued function defined on $[a, b]$ and α be monotonically increasing on $[a, b]$. Prove that $\int_a^b f d\alpha \leq \int_a^b f d\alpha$.

b) i) Show that $f \in R(\alpha)$ on $[a, b]$ if and only if for every $\varepsilon > 0$, there exists a partition P of $[a, b]$ such that $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$.

ii) Let f be a bounded real valued function defined on $[a, b]$. If $U(P, f, \alpha) - L(P, f, \alpha) < \varepsilon$ holds for some partition $P = \{a = x_0, x_1, \dots, x_n = b\}$ of $[a, b]$ and some $\varepsilon > 0$, then show that $\sum_{i=1}^n |f(s_i) - f(t_i)|\Delta\alpha_i < \varepsilon$, if $s_i, t_i \in [x_{i-1}, x_i]$.

c) Let $f_1, f_2 \in R(\alpha)$ on $[a, b]$. Show that $f_1 + f_2 \in R(\alpha)$ on $[a, b]$ and $\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$.

d) i) If f is continuous on $[a, b]$ and α is monotonically increasing on $[a, b]$, then show that $f \in R(\alpha)$ on $[a, b]$.

ii) Let α be monotonically increasing on $[a, b]$. Suppose $f \in R(\alpha)$ on $[a, b]$, $m \leq f \leq M$, ϕ is continuous on $[m, M]$ and $h(x) = \phi(f(x))$ on $[a, b]$. Show that $h \in R(\alpha)$ on $[a, b]$.

e) i) Let $f \in R$ on $[a, b]$ and let $F(x) = \int_a^x f(t) dt$ for all x in $[a, b]$. Show that F is continuous on $[a, b]$; and F is differentiable at $x_0 \in [a, b]$ and $F'(x_0) = f(x_0)$ if f is a continuous at x_0 .

ii) If $f \in R$ on $[a, b]$ and there is a differentiable function F on $[a, b]$ such that $F' = f$, then prove that $\int_a^b f(x) dx = F(b) - F(a)$.

2. Answer any three of the following questions:

10 × 3 = 30

a) Define the rearrangement of a sequence of real numbers. If $\sum_{n=1}^{\infty} a_n$ converges absolutely to A , then show that any rearrangement $\sum_{n=1}^{\infty} a'_n$ of $\sum_{n=1}^{\infty} a_n$ converges absolutely to A .

b) State and prove the Riemann's rearrangement theorem on series of real numbers.

c) i) Suppose $\lim_{n \rightarrow \infty} f_n(x) = f(x)$ for all $x \in E$.
 Put $M_n = \sup_{x \in E} |f_n(x) - f(x)|$. Prove that $f_n \rightarrow f$ uniformly on E and only if $M_n \rightarrow 0$ as $n \rightarrow \infty$.

ii) Show that the sequence $\{f_n\}$, where $f_n(x) = \frac{x}{1+nx^2}$, is uniformly convergent on any closed interval I .

d) i) Let $\{f_n\}$ be a sequence of continuous functions defined on E , and let $f_n \rightarrow f$ uniformly on E . Prove that f is continuous on E .
 ii) Let $\{f_n\}$ be a uniformly convergent sequence with uniform limit f on $[a, b]$ and let f_n be integrable on $[a, b]$ for all $n \in \mathbb{N}$. Prove that f is integrable on $[a, b]$ and $\int_a^b f(x) dx = \lim_{n \rightarrow \infty} \int_a^b f_n(x) dx$.

e) State and prove the Abel's test for uniform convergence of series of functions.

3. Answer any two of the following questions:

10 × 2 = 20

a) i) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then prove that $\|A\| < \infty$ and A is a uniformly continuous mapping of \mathbb{R}^n into \mathbb{R}^m .
 ii) If $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and c is a scalar, then prove that $\|A + B\| \leq \|A\| + \|B\|$ and $\|cA\| = |c|\|A\|$. Also show that $L(\mathbb{R}^n, \mathbb{R}^m)$ is a metric space with the distance between A and B defined by $\|A - B\|$.
 iii) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then prove that $\|BA\| \leq \|B\| \|A\|$.

b) i) Let E be an open set in \mathbb{R}^n , f maps E into \mathbb{R}^n , $x \in E$ and $\lim_{h \rightarrow 0} \frac{|f(x+h) - f(x) - Ah|}{|h|} = 0$ holds with $A = A_1$ and with $A = A_2$. Prove that $A_1 = A_2$.
 ii) Suppose E is an open set in \mathbb{R}^n , f maps E into \mathbb{R}^m , f is differentiable at $x_0 \in E$, g maps an open set containing $f(E)$ into \mathbb{R}^k , and g is differentiable at $f(x_0)$. Prove that the mapping F of E into \mathbb{R}^k defined by $F(x) = g(f(x))$ is differentiable at x_0 , and $F'(x_0) = g'(f(x_0))f'(x_0)$.
 iii) State and prove Inverse function theorem.
