

DHANAMANJURI UNIVERSITY**Examination- 2025 (June)****Four-year course B.A/B.Sc. 6th Semester (NEP)****Name of Programme : B.A. / B.Sc. Mathematics (Honours)****Paper Type : DSE****Paper Code : EMA-002****Paper Title : Number Theory****Full Marks : 80****Pass Marks : 32 Duration: 3 Hours***The figures in the margin indicate full marks for the questions.**Answer all the questions:***1. Choose and rewrite the correct answer for each of the following:** **$1 \times 3 = 3$** **a) The exponent of the highest power of 2 that divides $50!$ is**

- i) 45
- ii) 47
- iii) 50
- iv) 52

b) Consider the following statements: **S_1 : 15 has a primitive root** **S_2 : 18 has a primitive root.****Then**

- i) both S_1 and S_2 are true.
- ii) neither S_1 nor S_2 is true.
- iii) only S_1 is true.
- iv) only S_2 is true.

c) What is the value of the Legendre symbol $(-1/p)$ if $p \equiv 1 \pmod{4}$?

- 1
- 0
- 1
- 4

2. Write very short answer for each of the following questions: $1 \times 6 = 6$

- Evaluate $\tau(2200)$, where $\tau(n)$ denote the number of positive divisors of n .
- Find the order of the integer 5 modulo 13.
- Write the number of primitive roots of 17.
- State Euler's criterion.
- Write the quadratic residues of 11.
- Let a be an odd integer such that $x^2 \equiv a \pmod{32}$ has a solution. What can you say about the values of a ?

3. Answer the following questions: $3 \times 5 = 15$

- Show that $\sqrt{2}$ is irrational.
- If F is a multiplicative function and $F(n) = \sum_{d|n} f(d)$, then show that f is also multiplicative.
- If the integer a has order k modulo n and $h > 0$, then prove that a^h has order $k/\gcd(h, k)$ modulo n .
- Show that the only incongruent solutions of $x^2 \equiv 1 \pmod{p}$ are 1 and $p - 1$, where p is an odd prime.
- Find the value of the Legendre symbol $(219/383)$.

4. Answer the following questions: $4 \times 5 = 20$

- Solve the linear Diophantine equation $172x + 20y = 1000$.
- Show that $53^{103} + 103^{53}$ is divisible by 39.

c) Prove that the integer $2^k, k \geq 3$ has no primitive roots.

d) Let p be an odd prime. Prove that

$$(2/p) = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{8} \text{ or } p \equiv 7 \pmod{8} \\ -1, & \text{if } p \equiv 3 \pmod{8} \text{ or } p \equiv 5 \pmod{8} \end{cases}$$

e) If p is an odd prime, then prove that $\sum_{a=1}^{p-1} (a/p) = 0$.

5. Answer any two of the following questions:

6×2=12

a) State and prove Fundamental Theorem of Arithmetic.

b) Solve the system of congruences

$$x \equiv 3 \pmod{5}, \quad x \equiv 2 \pmod{7}, \quad x \equiv 6 \pmod{11}.$$

c) State and prove Wilson's theorem.

6. Answer any two of the following questions:

6×2=12

a) If p is a prime and

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \quad a_n \not\equiv 0 \pmod{p}$$

is a polynomial of degree $n \geq 1$ with integral coefficients, then prove that the congruence $f(x) \equiv 0 \pmod{p}$ has at most n incongruent solutions modulo p .

b) Let p be a prime number and $d|p-1$. Prove that there are exactly $\phi(d)$ incongruent integers having order d modulo p .

c) Solve the quadratic congruence

$$3x^2 + 9x + 7 \equiv 0 \pmod{13}.$$

7. Answer any two of the following questions:

6×2=12

a) State and prove Gauss's lemma.

b) If p is an odd prime and $\gcd(a, p) = 1$, then prove that the congruence

$$x^2 \equiv a \pmod{p^n}, n \geq 1$$

has a solution if and only if $(a/p) = 1$.

c) Given the RSA algorithm parameters where $p = 2$, $q = 11$ and $k = 3$, calculate the public key (n, k) and the private key j . Also, encrypt the message $M = 5$ using the public key and then decrypt it using the private key to verify the correctness of the encryption and decryption process.
