

DHANAMANJURI UNIVERSITY

Examination- 2025 (June)

Four-year course B.A/B.Sc. 6th Semester (NEP)

Name of Programme : B.A/B.Sc. Mathematics (Honours)

Paper Type : CORE (Theory)

Paper Code : CMA-316

Paper Title : Ring Theory and Linear Algebra II

Full Marks : 80

Pass Marks : 32 **Duration: 3 Hours**

The figures in the margin indicate full marks for the questions.

Answer all the questions:

1. Choose and rewrite the correct answer for each of the following:

1×3=3

a) The polynomial $f(x) = x^2 - 2 \in \mathbb{Z}[x]$ is

- i) Primitive as well as reducible
- ii) not primitive but reducible
- iii) Primitive as well as reducible
- iv) not primitive as well as irreducible.

b) Let R be an integral domain. Let $f(x), g(x) \in R[x]$ be such that $\deg(f(x)) = m$, $\deg(g(x)) = n$. Then $\deg(f(x) \cdot g(x))$ is

- i) less than $(m + n)$
- ii) less than $\min(m + n)$
- iii) less than $\max(m + n)$
- iv) equal to $(m + n)$.

c) A linear transformation $T:V \rightarrow W$ is non-singular if

- i) $\text{Ker } T = \{0\}$
- ii) $\text{Range } T = \{0\}$
- iii) $\text{Rank } T + \text{Nullity } T = \dim V$
- iv) $\dim V = \dim W$.

2. Write very short answer for each of the following questions:

1×6=6

- a) Let a and b be two non-zero elements in a Euclidean domain R . Write the condition for which a, b to be relatively prime.
- b) State Eisentein's Criterion of irreducibility.
- c) When is a square matrix of order $n \times n$ said to be diagonalizable?
- d) When is a non-zero polynomial $R[x]$ said to be primitive?
- e) Show that $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in F, v \in V$.
- f) Show that the set $S = \{(0,1,0), (0,0,1), (2,3,4)\}$ is linearly independent in the vector space $\mathbb{R}^3(\mathbb{R})$.

3. Answer the following questions:

3×5=15

- a) Prove that similar matrices have same characteristic polynomials.
- b) Give an example to show that AB is diagonalizable and BA is not diagonalizable, where A and B are $n \times n$ matrices over F .
- c) Let c_1, c_2, \dots, c_k be distinct eigen values and v_1, v_2, \dots, v_k be the corresponding eigen vectors of a linear operator T . Show that v_1, v_2, \dots, v_k are linearly independent.
- d) Let T be the linear operator on \mathbb{R}^3 defined by

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$
Show that T is invertible.

e) Let $R[x]$ be the ring of polynomials over R . Prove that R is commutative if and only if $R[x]$ is commutative.

4. Answer the following questions:

$4 \times 5 = 20$

a) Let T be a linear operator on a finite dimensional vector space $V(F)$. Prove that $c \in F$ is an eigen value of T if and only if $T - cI$ is singular.

b) If T be a linear operator on an n -dimensional vector space V and suppose that T has n distinct characteristic values. Show that T is diagonalizable.

c) If V is a finite dimensional inner product space and W is a subspace of V , prove that $V = W \oplus W^\perp$.

d) Let V be a finite dimensional vector space and W , a subspace of V . Prove that

$$\dim A(W) = \dim V - \dim W.$$

e) Let S be an orthogonal set of non zero vectors in an inner product space V . Show that S is a linearly independent set.

5. Answer any two of the following questions:

$6 \times 2 = 12$

a) Let R be a commutative ring with unity such that $R[x]$ is a PID. Show that R is a field.

b) Show that any two non-zero elements a, b in a Euclidean domain R have a g.c.d and it is possible to write $d = \lambda a + \mu b$ for some $\lambda, \mu \in R$.

c) Prove that an element in a UFD is prime if and only if it is irreducible.

6. Answer any two of the following questions:

$6 \times 2 = 12$

a) Prove that an element in a PID is prime if and only if it is irreducible.

b) Let u and v be eigen vectors of T corresponding to distinct eigen values of a linear operator T on V . Show that $u + v$ cannot be an eigen vector of T .

c) Construct a diagonalizable 3×3 matrix A whose eigen values are $-2, -2, 6$ and corresponding eigen vectors are $\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$.

7. Answer any two of the following questions:

$6 \times 2 = 12$

a) Let $V(F)$ be an inner product space. Show that

- $\|x + y\| \leq \|x\| + \|y\|$, for all $x, y \in V(F)$,
- $\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2)$.

b) If $\{w_1, w_2, \dots, w_m\}$ is an orthonormal set in V , then prove that

$$\sum_{i=1}^m (w_i, v)^2 \leq \|v\|^2, \text{ for all } v \in V$$

c) Let V be the space of all real valued continuous functions. Define $T: V \rightarrow V$ by

$$(Tf)(x) = \int_0^x f(t)dt.$$

Show that T has no eigen values.
