

DHANAMANJURI UNIVERSITY

Examination- 2024 (Dec)

Four-year course B.Sc./B.A. 3rd Semester

Name of Programme : B.Sc./B.A. Mathematics

Paper Type : Theory

Paper Code : CMA-209

Paper Title : Group Theory-I

Full Marks : 80

Pass Marks : 32

Duration: 3 Hours

The figures in the margin indicate full marks for the questions:

Answer all the questions.

1. Answer the following questions:

$$1 \times 3 = 3$$

a) The order of the group U_{15} is

- i) 15
- ii) 9
- iii) 10
- iv) 8

b) Number of generators of an infinite cyclic group is

- i) exactly two
- ii) only one
- iii) infinite
- iv) zero

c) The inverse of the permutation (1234) is

- i) (1234)
- ii) (4321)
- iii) (3214)
- iv) (1324)

2. Answer the following questions:

$$1 \times 6 = 6$$

a) For any a, x in a group G , show that $(x^{-1}ax)^3 = x^{-1}a^3x$.

b) Define a cyclic group.

c) Let $G = \{-1, 1, -i, i, -j, j, -k, k\}$ be the Quaternion group. Find the normalizer of i in G .

d) Define even permutation of a finite set.

e) If $f: G \rightarrow G'$ is a homomorphism then show that $f(x^{-1}) = (f(x))^{-1}$.

f) Find the kernel of $f: \mathbb{Z}_6 \rightarrow \mathbb{Z}_6$ where $f(x) = 2x$.

 $3 \times 5 = 15$

3. Answer any five of the following questions:

a) If G is a group in which $(ab)^i = a^i b^i$ for three consecutive integers i and any a, b in G , then show that G is abelian.

b) Let $G = \{(a, b) \mid a, b \in \mathbb{Q}, a \neq 0\}$. Define a binary composition $*$ on G by $(a, b) * (c, d) = (ac, ad + b)$ $\forall a, b, c, d \in \mathbb{Q}$, $a \neq 0, c \neq 0$. Then show that $(G, *)$ is a non-abelian group.

c) Prove that a non-empty subset H of a group G is a subgroup of G if $a, b \in H \Rightarrow ab^{-1} \in H$.

d) Show that a subgroup of a cyclic group is cyclic.

e) Find the generators of \mathbb{Z}_8 under addition modulo 8.

f) Prove that every quotient group of a cyclic group is cyclic.

g) Show that any finite cyclic group of order n is isomorphic to \mathbb{Z}_n the group of integers addition modulo n .

4. Answer any five of the following questions:

 $4 \times 5 = 20$

a) Define centre of the group G . Also, show that a centre of a group G is a subgroup of G .

b) Prove that union of two subgroups is a subgroup if one of them is contained in the other.

c) State and prove Lagrange's theorem.

d) Show that homomorphic image of
 i) an abelian group is abelian

ii) a cyclic group is cyclic

e) Prove that order of any permutation f in S_n is equal to the l.c.m of the orders of the disjoint cycles of f . What is the order of the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 5 & 1 & 3 \end{pmatrix}$

f) Let $f: G \rightarrow G'$ be a homomorphism, then show that the Kernel of $f, Ker f$ is a normal subgroup of G .

g) If $f: G \rightarrow G'$ be an onto homomorphism with $K = Ker f$, then prove that $\frac{G}{K} \cong G'$.

5. Answer any two of the following questions:

$6 \times 2 = 12$

a) Let G be a group. Then prove the following results

i) Identity element in G is unique.

ii) $(ab)^{-1} = b^{-1}a^{-1}$ for all $a, b \in G$, where a^{-1} denotes inverse of a .

iii) The equations $ax = b$ and $ya = b$ have unique solutions for x and y in G . $1+2+3=6$

b) Write the set of all the symmetries of an equilateral triangle. Then show that this set of symmetries D_3 forms a non-abelian group under a binary composition $*$ defined by $(ab) * = a(b *)$, $\forall a, b \in D_3$ where $a *$ means the effect of a on the triangle. $2+4=6$

c) Define Special Linear Group of order 2×2 . Show that the set of all matrices $G = \left\{ M_\theta = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \theta \in \mathbb{R} \right\}$ forms a group under matrix multiplication. $1+5=6$

6. Answer any two of the following questions:

a) Define centralizer $C(H)$ of H in group G . Show that $C(H)$ is a subgroup of G . Also, find the $C(H)$, if $H = \{-1, 1, -i, i\}$ is a subgroup of the Quaternion group $G = \{-1, 1, -i, i, -j, j, -k, k\}$. 1+3+2=6

b) Let H and K be two subgroups of a group G and define $HK = \{hk : h \in H, k \in K\}$. Show that HK is a subgroup of G , if $HK = KH$. 6

c) Show that order of a cyclic group is equal to the order of its generator. 6

7. Answer any two of the following questions:

a) Prove that a subgroup H of a group G is normal subgroup of G if product of two right cosets of H in G is again a right coset of H in G . 3+3=6

b) Let H be a subgroup of a group G , then prove that

- $Ha = H \Leftrightarrow a \in H$
- $Ha = Hb \Leftrightarrow ab^{-1} \in H$
- There is always a bijective mapping between any two right cosets of H in G . 2+2+2=6

c) If H and K are two normal subgroups of group G , such that

$$H \subseteq K, \text{ then prove that } \frac{G}{K} \cong \frac{G/H}{K/H}.$$
