DHANAMANJURI UNIVERSITY

Examination, 2023 (Dec)

Four year course B.A/B.Sc. 3rd semester

N. CD	
Name of Programme Semester	: B.A/B.Sc. Mathematics (Honours) : III
Paper Type	: III : Core-VIII (Theory)
Paper Code	: CMA-208
Paper Title	: Partial Differential Equations
Full Marks : 80	
Pass Marks : 32	Duration: 3 Hours
The figures in the margin indicate full marks for the questions.	
Answer all questions.	
1. Choose the correct answer from each of the following and rewrite it: $1 \times 4 = 4$	
a) The partial difference $z = e^{ny} f(x - y)$	erential equation by eliminating arbitrary function from the equation y) is
i) $p + q =$	= nz ii) $q - p = nz$
iii) $p-q =$	= nz iv) $pq = nz$
b) The singular solution of $z = px + qy + pq$ is	
i) $z = -2$	$2 - \log xy$ ii) $z = 2 - \log xy$
iii) $z = \log z$	$iv) \ z = 2 + \log xy$
c) The complete integral of $f(p,q) = 0$ by Charpit's method is	
i) $z = x + $	+ y + c ii) $z = ax + y + c$
iii) $z = x + $	+ by + c iv) $z = ax + by + c$
d) The operators $2\frac{\partial^2 u}{\partial t^2} + 4\frac{\partial^2 u}{\partial x \partial t} + 3\frac{\partial^2 u}{\partial x^2}$ represent	
i) a circle	ii) an elliptic
iii) Hyperb	iv) a parabolic
2. Write very short answer for each of the following questions: $1 \times 10 = 10$	
a) Define the order of a partial differential equation.	
b) Form the partial differential equation of $z = f\left(\frac{xy}{z}\right)$ by eliminating arbitrary function.	
c) Write the complete integral of the equation of the form $f(x, p) = F(y, q)$.	
d) Define general integral of the first order partial differential equation.	
e) Write the complete integral of $pq = 1$.	
f) State the form of the partial differential equation $p^3 + q^3 = 27z$.	
g) Write the complete integral of $p = e^q$.	
h) Find the solution of $s = 0$.	

- i) Solve $r = \sin(xy)$.
- j) Write Monge's subsidiary equations of $r = a^2 t$.

3. Write short answer for each of the following questions:

- a) Derive the partial differential equation by eliminating arbitrary constants.
- b) Find the integral surface of the Cauchy problem $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$, which passes through the circle $z = 0, x^2 + y^2 = 1$.
- c) Form a partial differential equation by eliminating the function f from $z = y^2 + 2f(\frac{1}{x} + \log y)$.
- d) Find the complete integral of $(y x)(qy px) = (p q)^2$.
- e) Solve: $z(p^2 q^2) = x y$.
- f) Solve: $2zx px^2 2qxy + bq = 0$ by Charpit's method.
- g) Solve: $t xq = x^2$.
- h) Solve: $(D^3 4D^2D' + 4DD'^2)z = 4\sin(2x + y)$.
- i) Solve: $(D D' 1)(D D' 2)z = e^{2x-y} + x$.
- j) Solve: $x^2 \frac{\partial^2 z}{\partial x^2} y^2 \frac{\partial^2 z}{\partial y^2} y \frac{\partial z}{\partial y} + x \frac{\partial z}{\partial x} = 0.$

4. Answer any two questions from the following questions:

- a) Derive the formula for partial differential equation by eliminating arbitrary functions.
- b) Form a partial differential equation by eliminating *a*, *b*, *c* from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- c) Show that the differential equation of all cones which have their vertex at the origin is px + qy = z. Verify that yz + zx + xy = 0 is a surface satisfying the above equation.

5. Answer any two questions from the following questions:

- a) Solve : $(x^2 + y^2)(p^2 + q^2) = 1$.
- b) Apply Charpit's method to find the complete integral of $p^2 + q^2 2px 2qy + 2xy = 0$.
- c) Describe Jacobi method of solving a general first order partial differential equation f(x, y, z, p, q) = 0. Illustrate the same equation $p^2x + q^2y = z$.

6. Answer any two question from the following questions:

- a) Find the surface passing through the parabolas z = 0, $y^2 = 4ax$ and z = 1, $y^2 = -4ax$ and satisfying the equation xr + 2p = 0.
- b) Solve: $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} nx \frac{\partial z}{\partial x} ny \frac{\partial z}{\partial y} + nz = x^2 + y^2$.
- c) Solve : $y^2r 2ys + t = p + 6y$ by Monge's method.

$$6 \times 2 = 12$$

$$6 \times 2 = 12$$

 $6 \times 2 = 12$