DHANAMANJURI UNIVERSITY

CMA-207

4

Examination, 2023 (Dec) Four year course B.A/B.Sc. 3rd semester

Name of Programme	:	B.A/B.Sc. Mathematics (Honours)
Semester	:	III
Paper Type	:	Core-VII (Theory)
Paper Code	:	СМА-207
Paper Title	:	Theory of Real Functions
Full Marks : 80		
Pass Marks : 32		Duration: 3 Hours
The figures in the margin indicate full marks for the questions.		
Answer all questions.		

1. Using
$$\varepsilon - \delta$$
 definition, show that $\lim_{x \to a} x^2 = a^2$. 4

2. State Squeeze theorem. Using the same, show that $\lim_{x \to 0} x^{\frac{3}{2}} = 0.$ 4

- 3. Prove that every uniformly continuous function on an interval *I* is continuous on *I*.
- 4. By using $\varepsilon \delta$ definition, prove that the sine function is continuous on \mathbb{R} .
- 5. Let $f: A \to \mathbb{R}$ and let *c* be a cluster point of *A*. Then, prove that the following statements are equivalent:
 - a) $\lim_{x \to c} f(x) = L$
 - b) Given any ε neighbourhood $V_{\varepsilon}(L)$ of *L*, there exists a δ –neighbourhood $V_{\delta}(c)$ of *c* such that $x \neq c$ is any point in $V_{\delta}(c) \cap A$, then f(x) belongs to $V_{\varepsilon}(L)$. 8

Or

State Sequential Criterion theorem for limits. Prove the same. 8

6. Answer any two questions from the following:

- a) Let I = [a, b] be closed bounded interval and $f: I \to \mathbb{R}$ be continuous on *I*. Then, prove that *f* is bounded on *I*.
- b) Let I = [a, b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be continuous on *I*. Then, show that *f* has an absolute maximum and an absolute minimum on *I*.
- c) Let I = [a, b] and let $f: I \to \mathbb{R}$ be continuous on *I*. If f(a) < 0 < f(b) or if f(a) > 0 > f(b). Then, prove that there exists a number $c \in (a, b)$ such that f(c) = 0.

7. Answer any three questions from the following: $8 \times 3 = 24$

State and prove

- a) Caratheordary's theorem.
- b) Interior Extremum theorem.
- c) Rolle's theorem
- d) Darboux's theorem.

8. Answer any two questions from the following: $8 \times 2 = 16$

- a) State Taylor's theorem in finite form with Lagrange's form of remainder. Prove the same.
- b) Let *I* be an interval, let x_0 be an interior point of *I*, and let $n \ge 2$. Suppose that the derivatives f', f'', ..., $f^{(n)}$ exist and are continuous in a neighbourhood of x_0 and that $f'(x_0) = \cdots = f^{(n-1)}(x_0) = 0$, but $f^{(n)}(x_0) \neq 0$ and *n* is even. Then prove that *f* has a relative maximum or a relative minimum at x_0 according as $f^{(n)}(x_0) > 0$ or $f^{(n)}(x_0) < 0$.
- c) Let *I* be an open interval and let $f: A \to \mathbb{R}$ have a second derivative on *I*. Then, prove that *f* is a convex function on *I* if and only if $f''(x) \ge 0$ for all $x \in I$.

CMA-207