

DHANAMANJURI UNIVERSITY
Examination- 2024 (Dec)
Four year course B.Sc./B.A. 1st Semester

Name of Programme : B.Sc./B.A. Mathematics

Paper Type : Core II(Theory)

Paper Code : CMA-102

Paper Title : Algebra

Full Marks : 80

Pass Marks : 32 **Duration: 3 Hours**

1. Choose and rewrite the correct answer for each of the

following:

$$1 \times 3 = 3$$

a) The principal value of the amplitude or argument of a complex number $z = (\cos \theta + i \sin \theta)$ is the value of θ which satisfies the inequality

- i) $-\pi \leq \theta \leq \pi$
- ii) $-\pi < \theta \leq \pi$
- iii) $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$
- iv) $-\frac{\pi}{2} < \theta \leq \frac{\pi}{2}$

b) Every diagonal element of a skew-Hermitian matrix is

- i) Pure real number
- ii) Pure imaginary number
- iii) Either a pure imaginary number or zero
- iv) Either a pure real number or zero

c) The equation whose roots are three times the roots of $x^3 + 2x^2 - 4x + 1 = 0$ is

- i) $x^3 + 6x^2 - 36x + 27 = 0$
- ii) $x^3 + 6x^2 + 36x + 27 = 0$
- iii) $x^3 + 2x^2 + 4x + 1 = 0$
- iv) $3x^3 + 6x^2 - 12x + 3 = 0$

2. Write very short answer for each of the following questions :

$1 \times 6 = 6$

- a) Find the remainder when $3x^4 + 11x^3 + 23x^2 + 21x - 10$ is divided by $x + 3$.
- b) What do you mean by rank of a matrix ?
- c) Express the complex number $0 + i$ in De Moivre's form.
- d) Let $\alpha, \alpha + \beta, \alpha + 2\beta, \dots, \{\alpha + (n-1)\beta\}$ be n angles in A.P. Write the Expression for the sum of sines of these n angles in A.P.
- e) State the Cauchy-Schwarz Inequality.
- f) States Descartes rule of signs.

3. Write short answer for each of the following questions: $3 \times 5 = 15$

- a) Find all the value of $(1 + i)^{\frac{1}{3}}$.
- b) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & -4 & 7 \\ -1 & -2 & -1 & -2 \end{bmatrix}$ by reducing A to Echelon form.
- c) If a, b, c are unequal and positive then prove that $\frac{bc}{b+c} + \frac{ca}{c+a} + \frac{ab}{a+b} < \frac{1}{2}(a+b+c)$.
- d) Examine the linear independence or dependence of the following set of vectors $\{[1, 2-1, 6], [3, 8, 9, 10], [2, -1, 2, -2]\}$.
- e) Show that $x^3 - 7x + 2 = 0$ has one negative root, a positive root between 0 and 1 and another positive root greater than 1.

4. Write answer for each of the following questions:

$4 \times 5 = 20$

- a) State and prove Minkowski's inequality.
- b) Find the value of the series $1 - \frac{2}{3!} + \frac{3}{5!} - \frac{4}{7!} + \dots$
- c) Express $\text{Log}\{\text{Log}(\cos \theta + i \sin \theta)\}$ in the form of $A + iB$

d) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

e) Find the equation whose roots are twice the reciprocals of the roots of $x^4 + 3x^3 - 6x^2 + 2x - 4 = 0$.

5. Answer any two of the following questions:

6 × 2 = 12

a) State and prove De Moivre's Theorem.

b) Prove that if $(a_1 + ib_1)(a_2 + ib_2)\dots(a_n + ib_n) = A + iB$ then

i) $\tan^{-1} \frac{b_1}{a_1} + \tan^{-1} \frac{b_2}{a_2} + \dots + \tan^{-1} \frac{b_n}{a_n} = \tan^{-1} \frac{B}{A}$

ii) $(a_1^2 + b_1^2)(a_2^2 + b_2^2)\dots(a_n^2 + b_n^2) = A^2 + B^2$.

iii) If ϕ lies between $\frac{\pi}{4}$ and $\frac{3\pi}{4}$ show that $\phi = \frac{\pi}{2} - \cot \phi + \frac{1}{3} \cot^3 \phi - \frac{1}{5} \cot^5 \phi + \dots$

6. Answer any two of the following questions:

6 × 2 = 12

a) Prove that if a and b are positive and unequal then $\frac{a^m + b^m}{2} > \left(\frac{a+b}{2}\right)^m$, except when m lies between 0 and 1.

b) Solve $x^3 - 15x - 126 = 0$ by using Cardan's method.

c) If α, β, γ be the roots of the equation $x^3 + px^2 + qx + r = 0$ find the value of $\sum \frac{\beta^2 + \gamma^2}{\beta\gamma}$.

7. Answer any two of the following questions:

6 × 2 = 12

a) State and prove Cayley-Hamilton theorem.

b) Define eigenvectors and eigenvalues of a matrix. Determine the eigenvalue and Eigen vectors of the matrix $A = \begin{bmatrix} 1 & -2 \\ -5 & 4 \end{bmatrix}$

c) Verify that the characteristic equation of the matrix $A = \begin{bmatrix} 1 & -1 & 3 \\ 2 & 1 & 4 \\ 1 & -2 & 2 \end{bmatrix}$ is satisfied by A and hence obtain A^{-1} .
