

DHANAMANJURI UNIVERSITY

Examination- 2024 (Dec)

Four year course B.Sc./B.A. 1st Semester

Name of Programme : B.Sc./B.A. Mathematics

Paper Type : Core I(Theory)

Paper Code : CMA-101

Paper Title : Calculus

Full Marks : 80

Pass Marks : 32

Duration: 3 Hours

The figures in the margin indicate full marks for the questions.

1. Choose and rewrite the correct answer for each of the following: $1 \times 3 = 3$

a) If $y = e^{ax}$ then y_n is

i) e^{ax}	ii) $a^n e^{ax}$
iii) $\frac{e^{ax}}{a}$	iv) $a e^{ax}$

b) If $y \frac{d^2y}{dx^2} > 0$ at $P(x, y)$, then the curve $y = f(x)$ at P with respect to x -axis is

- i) Convex
- ii) Concave
- iii) Neither convex nor concave
- iv) Either convex or concave

c) The maximum number of asymptotes of a curve of degree n is

i) $n - 1$	ii) $n + 1$
iii) n	iv) n^2

2. Write very short answer for each of the following questions: $1 \times 6 = 6$

a) State Leibnitz's theorem.

b) Define limit of a function $f(x, y)$.

c) What is the condition for a point P to be a point of inflection on the curve $y = f(x)$?

d) Evaluate $\int_0^{\frac{\pi}{2}} \sin^6 x \, dx$.

e) Change the order of integration in the integral $\int_0^1 \int_0^x f(x, y) \, dy \, dx$.

f) Find the length of the curve $y = 2x + 1$ on the interval $[1, 5]$.

3. Write short answer for each of the following: **$3 \times 5 = 15$**

a) Find n^{th} derivative of the function $y = x^3 \sin x$.

b) Prove that the curve $y = \log x$ is convex to the foot of the ordinate in the range $0 < x < 1$ and concave where $x > 1$.

c) Write the steps of procedure for tracing of Cartesian curves.

d) Show that the function $f(x, y) = 3x^3 + 4x^2y - 3xy^2 - 4y$ is neither a maximum nor a minimum at $(0, 0)$.

e) Show that the area between $y = x^2$ and $x = y^2$ is $\frac{1}{3}$ sq. units.

4. Write short answer for each of the following questions: **$4 \times 5 = 20$**

a) Evaluate: $\lim_{x \rightarrow 0} \frac{x - \sin x \cos x}{x^3}$.

b) Find all relative extrema of the function $f(x) = x^3 - 3x$ by using the first derivative test.

c) Find the radius of curvature at any point (x, y) for the curve $y = \frac{1}{2}a \left[e^{\frac{x}{a}} + e^{-\frac{x}{a}} \right]$.

d) Verify Euler's theorem for the function $u = \sin \frac{x^2+y^2}{xy}$.

e) Find the length of the perimeter of the circle $x^2 + y^2 = a^2$.

5. Answer any two of the following questions: **$6 \times 2 = 12$**

a) State and prove Rolle's theorem.

b) Expand the function $\sin x$ in a finite series in powers of x , with the remainder in Lagrange's form.

c) Find the n^{th} derivative of the function $y = e^{3x} \sin 4x$.

6. Answer any two of the following questions:**6 × 2 = 12**

a) If $u = \log(x^2 + y^3 + z^3 - 3xyz)$, then show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$.

b) Examine the extreme values of $x^3 + y^3 - 3axy$.

c) Find the asymptotes of the curve

$$y^3 - 6xy^2 + 11x^2y - 6x^3 + y^2 - x^2 + 2x - 3y - 1 = 0.$$

7. Answer any two of the following questions:**6 × 2 = 12**

a) If $I_{m,n} = \int \sin^m x \cos^n x dx$ then show that $I_{m,n} = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} I_{m,n-2}$
 Hence find a reduction formula for $\int_0^{\frac{\pi}{2}} \sin^m x \cos^n x dx$.

b) Show that $\int_0^1 dx \int_0^1 \frac{x-y}{(x+y)^3} dy \neq \int_0^1 dy \int_0^1 \frac{x-y}{(x-y)^3} dx$.

c) Find the volume and the surface area of the solid generated by revolving the arc of the astroid $x = a \cos^3 \theta, y = a \sin^3 \theta$ from $\theta = 0$ to $\theta = \frac{\pi}{2}$.
