

DHANAMANJURI UNIVERSITY

Examination- 2022 (Dec)

Four year course B.Sc./B.A. 1st Semester

Name of Programme : B.Sc./B.A. Mathematics(Honours)

Paper Type : Core

Paper Code : CMA-101

Paper Title : Calculus

Full Marks : 80

Pass Marks : 32

Duration: 3 Hours

The figures in the margin indicate full marks for the questions:

Answer all the question.

1. Choose and rewrite the correct answer for each of the following:

1 × 5 = 5

a) The n^{th} derivative of $\frac{1}{x+a}$ is

i) $\frac{(-1)^n n!}{(x+a)^n}$

ii) $\frac{(-1)^{n+1} (n+1)!}{(x+a)^{n+1}}$

iii) $\frac{(-1)^n n!}{(x+a)^{n+1}}$

iv) $\frac{(-1)^{n+1} n!}{(x+a)^n}$

b) If $x = r \cos \theta, y = r \sin \theta$, then the value of $\frac{\delta \theta}{\delta x}$ is

i) $\frac{\sin \theta}{r}$

ii) $\frac{\cos \theta}{r}$

iii) $\cos \theta$

iv) $\frac{-\sin \theta}{r}$

c) The radius of curvature of the curve $y = \log \sin x$ at the point (x, y) is

i) $\operatorname{cosec} x$

ii) $\sec x$

iii) $\cot x$

iv) $\tan x$

d) If $f(x, y) = \frac{x^3 + y^3}{x - y}$, then the function $f(x, y)$ is a homogeneous of degree

i) 3

ii) 2

iii) 1

iv) 0

e) The area of the asteroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ is

i) $\frac{3}{4}\pi a^2$ ii) $\frac{4}{3}\pi a^2$

iii) $\frac{3}{8}\pi a^2$ iv) $\frac{8}{3}\pi a^2$

2. Write very short answer for each of the following questions: **1 × 6 = 6**

a) State Leibnitz Theorem .

b) In the mean value theorem $f(b) = f(a) + (b - a)f'(c)$ if $f(x) = 2x^2$, $a = 0$ and $b = 2$, then find the value of c .

c) Define continuity of the function $f(x, y)$ at a point (a, b) .

d) Write down the expression for the radius of the curvature of the Cartesian equation $y = f(x)$.

e) Write the value of $\int_0^{\frac{\pi}{2}} \cos^3 x dx$.

f) What is meant by concavity ?

3. Write short answer for each of the following questions: $3 \times 9 = 27$

a) Find the n^{th} derivative of $e^{ax+b} \sin x$.

b) Evaluate: $\lim_{x \rightarrow 0} \left(\frac{1}{(x^2)} - \frac{1}{(\sin^2 x)} \right)$.

c) Show that $\lim_{(x,y) \rightarrow (0,0)} \frac{2xy}{x^2 + y^2}$ does not exist .

d) If $u = \tan^{-1}(\frac{y}{x})$ then show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

e) Find the asymptotes of $x^3 + 2x^2y + xy^2 - x + 1 = 0$.

f) Find the point of inflexion of curve $x = \log\left(\frac{y}{x}\right)$.

g) If $U_n = \int_0^{\frac{\pi}{2}} \sin^n \theta \, d\theta$ and $n > 1$, then prove that $U_n = \frac{n-1}{n} U_{n-2} + \frac{1}{2}$.

h) Find the length of the arc of the curve

$$x = e^\theta \sin \theta$$

$$y = e^\theta \cos \theta$$

from $\theta = 0$ to $\theta = \frac{\pi}{2}$.

i) Find the area of the segment cut off from the parabola $y^2 = 4x$ by the line $y = x$.

4. Answer any two of the following questions: **2 × 6 = 12**

a) If $y = \tan^{-1} x$, then prove that

$$(1 + x^2)y_{n+1} + 2nxy_n + n(n-1)y_{n-1} = 0. \text{ Hence also find the value of } (y_n)_0.$$

b) State and prove Rolle's theorem.

c) State and prove Taylor's with Lagrange's form of remainder.

d) Find the values of a and b in order that $\lim_{x \rightarrow 0} \frac{x(1 + a \cos x) - b \sin x}{x^3}$ may be equal to 1.

5. Answer any three of the following questions: **6 × 2 = 12**

a) If $u = \tan^{-1} \frac{x^3 + y^3}{x - y}$ prove that

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = (1 - 4 \sin^2 u) \sin 2u.$$

b) If $\frac{x^2}{a^2 + u} + \frac{y^2}{b^2 + u} + \frac{z^2}{c^2 + u} = 1$, prove that

$$u_x^2 + u_y^2 + u_z^2 = 2(xu_x + yu_y + zu_z).$$

c) Examine $f(x, y) = x^3 + y^3 - 3axy$ for maximum and minimum value.

d) If ρ_1 and ρ_2 be the radii of curvature at the ends of a focal chord of the parabola $y^2 = 4ax$, then prove that $\rho_1^{\frac{-2}{3}} + \rho_2^{\frac{-2}{3}} = (2a)^{\frac{-2}{3}}$.

e) Find the characteristics of the curve $y(x^2 + 4) = 8$ and then trace it.

6. Answer any two of the following questions: **6 × 2 = 12**

a) Find the reduction formula for $\int \tan^n x \, dx$ and hence or otherwise find the value of $\int \tan^6 x \, dx$.

b) The circle $x^2 + y^2 = a^2$ revolves round the x-axis, show that the surface area and volume of the whole sphere generated are $4\pi a^2$ and $\frac{4}{3}\pi a^3$ respectively.

c) Change the order of the integration in the double integral

$$\int_0^{a \cos \alpha} dx \int_{x \tan \alpha}^{\sqrt{a^2 - x^2}} f(x, y) \, dx \, dy.$$

d) Prove by evaluating the repeated integrals that

$$\int_0^1 dx \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \neq \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx.$$
